Copy logo as SVG

Copy brandmark as SVG

Open brand kit

  • Products

    Products & Services

    Timescale Cloud

    A reliable PostgreSQL cloud for your workloads

    Timescale Cloud

    Support Services

    Support options for your use case, infrastructure, and budget

    Cloud supportSelf-managed support

    Workloads

    Time Series

    Lightning-fast ingest and querying on PostgreSQL

    Time Series

    Real-Time Analytics

    The fastest real-time analytics on PostgreSQL

    Real-Time Analytics

    AI and Vector

    Build RAG, search, and Al agents, all on PostgreSQL

    AI and Vector

    Open-Source Extensions and Tools

    Time Series and Real-Time Analytics

    A reliable PostgreSQL cloud for your workloads

    timescaledbtimescaledb-toolkit

    AI and Vector

    pgaipgvectorscale

    Security Scanner

    pgspot
    Explore our Enterprise Tier

    Security, reliability, and support for demanding businesses.

  • Solutions

    Industries That Rely On Us

    CryptoIndustrial IoTEnergyTransportation and logisticsManufacturing

    Featured Articles

    Scale PostgreSQL via Partitioning: A Dev’s Intro to Hypertables

    Scale PostgreSQL via Partitioning: A Dev’s Intro to Hypertables

    Read more

    Scale PostgreSQL via Partitioning: A Dev’s Intro to Hypertables
    Boosting Postgres INSERT Performance by 2x With UNNEST

    Boosting Postgres INSERT Performance by 2x With UNNEST

    Read more

    Boosting Postgres INSERT Performance by 2x With UNNEST
  • Customers
  • Developers

    Documentation

    Timescale Docs

    Learn how to make PostgreSQL faster with our documentation

    Timescale Docs

    AI and Vector

    Learn how to use PostgreSQL for Al with our documentation

    AI and Vector

    Learn PostgreSQL

    Learn PostgreSQL

    Learn the PostgreSQL basics and scale your database performance

    OverviewTime series basicsPostgres basicsPostgres guidesBenchmarksPostgres cheat sheet

    Timescale Benchmarks

    Timescale benchmarks

    See how Timescale performs against the competition

    vs RDS PostgreSQLvs Amazon Timestreamvs Influxvs MongoDBvs ClickHousevs Auroravs Cassandravs vanilla PostgreSQL

    More

    Blog

    Tutorials

    Support

    Community

    Changelog

    GitHub

    Slack

    Forum

    Launch Hub

    Partners

  • Pricing
Contact usLog InTry for free
Home
What Is a Time Series and How Is It Used?Is Your Data Time Series? Data Types Supported by PostgreSQL and TimescaleWhy Consider Using PostgreSQL for Time-Series Data?Time-Series Analysis in RUnderstanding Database Workloads: Variable, Bursty, and Uniform PatternsHow to Work With Time Series in Python?Tools for Working With Time-Series Analysis in PythonGuide to Time-Series Analysis in PythonTime-Series Analysis and Forecasting With Python The Best Time-Series Databases ComparedUnderstanding Autoregressive Time-Series ModelingAlternatives to TimescaleAWS Time-Series Database: Understanding Your OptionsStationary Time-Series AnalysisCreating a Fast Time-Series Graph With Postgres Materialized ViewsWhat Are Open-Source Time-Series Databases—Understanding Your OptionsWhat Is Temporal Data?
Optimizing Your Database: A Deep Dive into PostgreSQL Data TypesHow to Install PostgreSQL on LinuxHow to Install PostgreSQL on MacOSUnderstanding percentile_cont() and percentile_disc() in PostgreSQLUsing PostgreSQL UPDATE With JOINUnderstanding PostgreSQL Conditional FunctionsUnderstanding PostgreSQL Array FunctionsUnderstanding PostgreSQLUnderstanding FROM in PostgreSQL (With Examples)How to Address ‘Error: Could Not Resize Shared Memory Segment’ 5 Common Connection Errors in PostgreSQL and How to Solve ThemPostgreSQL Mathematical Functions: Enhancing Coding EfficiencyUnderstanding PostgreSQL Date and Time FunctionsPostgreSQL Join Type TheoryData Partitioning: What It Is and Why It MattersWhat Is Data Compression and How Does It Work?What Characters Are Allowed in PostgreSQL Strings?Understanding PostgreSQL's COALESCE FunctionUnderstanding HAVING in PostgreSQL (With Examples)How to Fix No Partition of Relation Found for Row in Postgres DatabasesUnderstanding GROUP BY in PostgreSQL (With Examples)How to Fix Transaction ID Wraparound ExhaustionUnderstanding LIMIT in PostgreSQL (With Examples)Understanding ORDER BY in PostgreSQL (With Examples)Understanding WINDOW in PostgreSQL (With Examples)Self-Hosted or Cloud Database? A Countryside Reflection on Infrastructure ChoicesWhat Is Data Transformation, and Why Is It Important?Understanding PostgreSQL User-Defined FunctionsStructured vs. Semi-Structured vs. Unstructured Data in PostgreSQLUnderstanding SQL Aggregate FunctionsUnderstanding Foreign Keys in PostgreSQLUnderstanding FILTER in PostgreSQL (With Examples)Understanding PostgreSQL FunctionsUnderstanding PostgreSQL WITHIN GROUPUnderstanding DISTINCT in PostgreSQL (With Examples)Using PostgreSQL String Functions for Improved Data AnalysisData Processing With PostgreSQL Window FunctionsUnderstanding WHERE in PostgreSQL (With Examples)PostgreSQL Joins : A SummaryUnderstanding OFFSET in PostgreSQL (With Examples)Understanding the Postgres string_agg FunctionWhat Is a PostgreSQL Full Outer Join?What Is a PostgreSQL Cross Join?What Is a PostgreSQL Inner Join?What Is a PostgreSQL Left Join? And a Right Join?Understanding PostgreSQL SELECTA Guide to PostgreSQL ViewsUnderstanding ACID Compliance Strategies for Improving Postgres JOIN PerformanceUnderstanding the Postgres extract() FunctionUnderstanding the rank() and dense_rank() Functions in PostgreSQL
How to Index JSONB Columns in PostgreSQLHow to Monitor and Optimize PostgreSQL Index PerformancePostgreSQL Performance Tuning: Optimizing Database IndexesOptimizing Array Queries With GIN Indexes in PostgreSQLSQL/JSON Data Model and JSON in SQL: A PostgreSQL PerspectiveHow to Query JSON Metadata in PostgreSQLHow to Query JSONB in PostgreSQLA Guide to pg_restore (and pg_restore Example)Handling Large Objects in PostgresPostgreSQL Performance Tuning: Designing and Implementing Your Database SchemaPostgreSQL Performance Tuning: Key ParametersHow to Reduce Bloat in Large PostgreSQL TablesDetermining the Optimal Postgres Partition SizeGuide to PostgreSQL Database OperationsPostgreSQL Performance Tuning: How to Size Your DatabaseGuide to PostgreSQL PerformanceDesigning Your Database Schema: Wide vs. Narrow Postgres TablesWhat Is a PostgreSQL Temporary View?A PostgreSQL Database Replication GuideUnderstanding PostgreSQL TablespacesGuide to Postgres Data ManagementHow PostgreSQL Data Aggregation WorksBuilding a Scalable DatabaseA Guide to Scaling PostgreSQLPg_partman vs. Hypertables for Postgres PartitioningHow to Use PostgreSQL for Data TransformationWhen to Consider Postgres PartitioningRecursive Query in SQL: What It Is, and How to Write OneGuide to PostgreSQL Database DesignTop PostgreSQL Drivers for PythonNavigating Growing PostgreSQL Tables With Partitioning (and More)An Intro to Data Modeling on PostgreSQLExplaining PostgreSQL EXPLAINBest Practices for (Time-)Series Metadata Tables A Guide to Data Analysis on PostgreSQLWhat Is Audit Logging and How to Enable It in PostgreSQLGuide to PostgreSQL SecurityBest Practices for Time-Series Data Modeling: Single or Multiple Partitioned Table(s) a.k.a. Hypertables How to Compute Standard Deviation With PostgreSQLHow to Use Psycopg2: The PostgreSQL Adapter for Python
Best Practices for Scaling PostgreSQLBest Practices for PostgreSQL Database OperationsHow to Store Video in PostgreSQL Using BYTEAHow to Handle High-Cardinality Data in PostgreSQLHow to Use PostgreSQL for Data NormalizationTesting Postgres Ingest: INSERT vs. Batch INSERT vs. COPYBest Practices for Postgres SecurityBest Practices for Postgres Data ManagementBest Practices for Postgres PerformanceHow to Design Your PostgreSQL Database: Two Schema ExamplesHow to Manage Your Data With Data Retention PoliciesBest Practices for PostgreSQL Data AnalysisBest Practices for PostgreSQL AggregationBest Practices for Postgres Database ReplicationHow to Use a Common Table Expression (CTE) in SQL
PostgreSQL Extensions: Using PostGIS and Timescale for Advanced Geospatial InsightsPostgreSQL Extensions: Turning PostgreSQL Into a Vector Database With pgvectorPostgreSQL Extensions: amcheckPostgreSQL Extensions: Unlocking Multidimensional Points With Cube PostgreSQL Extensions: hstorePostgreSQL Extensions: ltreePostgreSQL Extensions: Secure Your Time-Series Data With pgcryptoPostgreSQL Extensions: pg_prewarmPostgreSQL Extensions: pgRoutingPostgreSQL Extensions: pg_stat_statementsPostgreSQL Extensions: Database Testing With pgTAPPostgreSQL Extensions: Install pg_trgm for Data MatchingPostgreSQL Extensions: PL/pgSQLPostgreSQL Extensions: Intro to uuid-ossp
PostgreSQL as a Real-Time Analytics DatabaseHow to Build an IoT Pipeline for Real-Time Analytics in PostgreSQLHow to Choose a Real-Time Analytics DatabaseUnderstanding OLTPOLAP Workloads on PostgreSQL: A GuideHow to Choose an OLAP DatabaseData Analytics vs. Real-Time Analytics: How to Pick Your Database (and Why It Should Be PostgreSQL)What Is the Best Database for Real-Time AnalyticsColumnar Databases vs. Row-Oriented Databases: Which to Choose?
Text-to-SQL: A Developer’s Zero-to-Hero GuideA Brief History of AI: How Did We Get Here, and What's Next?A Beginner’s Guide to Vector EmbeddingsPostgreSQL as a Vector Database: A Pgvector TutorialUsing Pgvector With PythonHow to Choose a Vector DatabaseVector Databases Are the Wrong AbstractionUnderstanding DiskANNStreaming DiskANN: How We Made PostgreSQL as Fast as Pinecone for Vector DataA Guide to Cosine SimilarityImplementing Cosine Similarity in PythonVector Database Basics: HNSWVector Database Options for AWSVector Store vs. Vector Database: Understanding the ConnectionPgvector vs. Pinecone: Vector Database Performance and Cost ComparisonHow to Build LLM Applications With Pgvector Vector Store in LangChainHow to Implement RAG With Amazon Bedrock and LangChainRetrieval-Augmented Generation With Claude Sonnet 3.5 and PgvectorRAG Is More Than Just Vector SearchPostgreSQL Hybrid Search Using Pgvector and CohereWhat Is Vector Search? Vector Search vs Semantic SearchNearest Neighbor Indexes: What Are IVFFlat Indexes in Pgvector and How Do They WorkImplementing Filtered Semantic Search Using Pgvector and JavaScriptRefining Vector Search Queries With Time Filters in Pgvector: A TutorialUnderstanding Semantic SearchBuilding an AI Image Gallery With OpenAI CLIP, Claude Sonnet 3.5, and PgvectorWhen Should You Use Full-Text Search vs. Vector Search?HNSW vs. DiskANN
Why You Should Use PostgreSQL for Industrial IoT DataHow Hopthru Powers Real-Time Transit Analytics From a 1 TB Table Migrating a Low-Code IoT Platform Storing 20M Records/DayHow Ndustrial Is Providing Fast Real-Time Queries and Safely Storing Client Data With 97 % CompressionHow United Manufacturing Hub Is Introducing Open Source to ManufacturingFrom Ingest to Insights in Milliseconds: Everactive's Tech Transformation With TimescaleUnderstanding IoT (Internet of Things)Moving Past Legacy Systems: Data Historian vs. Time-Series DatabaseBuilding IoT Pipelines for Faster Analytics With IoT CoreVisualizing IoT Data at Scale With Hopara and TimescaleDBHow to Simulate a Basic IoT Sensor Dataset on PostgreSQLA Beginner’s Guide to IIoT and Industry 4.0Storing IoT Data: 8 Reasons Why You Should Use PostgreSQLHow to Choose an IoT Database
What Is ClickHouse and How Does It Compare to PostgreSQL and TimescaleDB for Time Series?Timescale vs. Amazon RDS PostgreSQL: Up to 350x Faster Queries, 44 % Faster Ingest, 95 % Storage Savings for Time-Series DataWhat We Learned From Benchmarking Amazon Aurora PostgreSQL ServerlessTimescaleDB vs. Amazon Timestream: 6,000x Higher Inserts, 5-175x Faster Queries, 150-220x CheaperHow to Store Time-Series Data in MongoDB and Why That’s a Bad IdeaPostgreSQL + TimescaleDB: 1,000x Faster Queries, 90 % Data Compression, and Much MoreEye or the Tiger: Benchmarking Cassandra vs. TimescaleDB for Time-Series Data
Alternatives to RDSWhy Is RDS so Expensive? Understanding RDS Pricing and CostsEstimating RDS CostsHow to Migrate From AWS RDS for PostgreSQL to TimescaleAmazon Aurora vs. RDS: Understanding the Difference
5 InfluxDB Alternatives for Your Time-Series Data8 Reasons to Choose Timescale as Your InfluxDB Alternative What InfluxDB Got Wrong InfluxQL, Flux, and SQL: Which Query Language Is Best? (With Cheatsheet)TimescaleDB vs. InfluxDB: Purpose Built Differently for Time-Series Data
More Time-Series Data Analysis, Fewer Lines of Code: Meet HyperfunctionsTimescale Tips: Testing Your Chunk SizeHow to Migrate Your Data to Timescale (3 Ways)Postgres TOAST vs. Timescale CompressionBuilding Python Apps With PostgreSQL: A Developer's GuideData Visualization in PostgreSQL With Apache SupersetIs Postgres Partitioning Really That Hard? An Introduction To HypertablesPostgreSQL Materialized Views and Where to Find Them5 Ways to Monitor Your PostgreSQL Database
Postgres cheat sheet
HomeTime series basicsPostgres basicsPostgres guidesPostgres best practicesPostgres extensionsPostgres for real-time analytics
Sections
Postgres overview
Understanding PostgreSQLOptimizing Your Database: A Deep Dive into PostgreSQL Data Types
Install postgres
How to Install PostgreSQL on LinuxHow to Install PostgreSQL on MacOS
Postgres clauses
Understanding FROM in PostgreSQL (With Examples)Understanding FILTER in PostgreSQL (With Examples)Understanding HAVING in PostgreSQL (With Examples)Understanding GROUP BY in PostgreSQL (With Examples)Understanding LIMIT in PostgreSQL (With Examples)Understanding ORDER BY in PostgreSQL (With Examples)Understanding WINDOW in PostgreSQL (With Examples)Understanding PostgreSQL WITHIN GROUPUnderstanding DISTINCT in PostgreSQL (With Examples)Understanding WHERE in PostgreSQL (With Examples)Understanding OFFSET in PostgreSQL (With Examples)
Postgres errors
How to Address ‘Error: Could Not Resize Shared Memory Segment’ 5 Common Connection Errors in PostgreSQL and How to Solve ThemHow to Fix No Partition of Relation Found for Row in Postgres DatabasesHow to Fix Transaction ID Wraparound Exhaustion
Postgres joins
PostgreSQL Joins : A SummaryWhat Is a PostgreSQL Full Outer Join?What Is a PostgreSQL Cross Join?What Is a PostgreSQL Inner Join?What Is a PostgreSQL Left Join? And a Right Join?PostgreSQL Join Type TheoryStrategies for Improving Postgres JOIN Performance
Postgres operations
A Guide to PostgreSQL ViewsData Partitioning: What It Is and Why It MattersWhat Is Data Compression and How Does It Work?Self-Hosted or Cloud Database? A Countryside Reflection on Infrastructure Choices
Postgres functions
Understanding PostgreSQL FunctionsPostgreSQL Mathematical Functions: Enhancing Coding EfficiencyUsing PostgreSQL String Functions for Improved Data AnalysisData Processing With PostgreSQL Window FunctionsUnderstanding PostgreSQL Date and Time FunctionsUnderstanding the Postgres string_agg FunctionUnderstanding percentile_cont() and percentile_disc() in PostgreSQLUnderstanding PostgreSQL Conditional FunctionsUnderstanding PostgreSQL Array FunctionsUnderstanding PostgreSQL's COALESCE FunctionUnderstanding PostgreSQL User-Defined FunctionsUnderstanding SQL Aggregate FunctionsUnderstanding the Postgres extract() FunctionUnderstanding the rank() and dense_rank() Functions in PostgreSQL
Postgres statements
Understanding PostgreSQL SELECTUsing PostgreSQL UPDATE With JOINWhat Characters Are Allowed in PostgreSQL Strings?
Data analysis
What Is Data Transformation, and Why Is It Important?
More
Understanding ACID Compliance Structured vs. Semi-Structured vs. Unstructured Data in PostgreSQLUnderstanding Foreign Keys in PostgreSQL

Products

Time Series and Analytics AI and Vector Enterprise Plan Cloud Status Support Security Cloud Terms of Service

Learn

Documentation Blog Forum Tutorials Changelog Success Stories Time Series Database

Company

Contact Us Careers About Brand Community Timescale Shop Code Of Conduct

Subscribe to the Timescale Newsletter

By submitting, you acknowledge Timescale’s Privacy Policy

2025 © Timescale Inc. All rights reserved.

Privacy preferences

LegalPrivacySitemap

Understanding percentile_cont() and percentile_disc() in PostgreSQL

Try for free

Start supercharging your PostgreSQL today.

Abstract shapes over a dark background.

PostgreSQL has two functions to calculate the percentile for a list of values at any percentage: percentile_cont() and percentile_disc(). These two functions work similarly, but they differ in how they produce the final result. Both are used with ordered-set aggregates returned by the WITHIN GROUP clause.

The percentile_disc() function returns a value from the input set that is the closest to the percentile requested. The value returned will actually exist in the set. 

Here's the percentile_disc() syntax:

SELECT percentile_disc(<fraction double precision>) WITHIN GROUP (<sort_expression>) FROM <table>;

The percentile_cont() function returns an interpolated value between multiple values based on the distribution. It is more accurate, but it may return a fractional value between two values in the input set.

percentile_cont() syntax:

SELECT percentile_cont(<fraction double precision>) WITHIN GROUP (<sort_expression>) FROM <table>;

Examples

  • Calculating the median

  • Calculating multiple percentiles

  • Calculating a series of percentiles

For the following examples, we will use this set of weather data stored in a table called city_data:

day

city

temperature

precipitation

2021-09-04

Miami

68.36

0.00

2021-09-05

Miami

72.50

0.00

2021-09-01

Miami

65.30

0.28

2021-09-02

Miami

64.40

0.79

2021-09-03

Miami

68.18

0.47

2021-09-04

Atlanta

67.28

0.00

2021-09-05

Atlanta

68.72

0.00

2021-09-01

Atlanta

63.14

0.20

2021-09-02

Atlanta

62.60

0.59

2021-09-03

Atlanta

62.60

0.39

Calculating the Median

The median is also known as the 50th percentile. You can calculate it from the dataset with the following query:

SELECT percentile_disc(0.5) WITHIN GROUP ( ORDER BY temperature) FROM city_data;

The result is:

percentile_disc

65.30

Because the query used percentile_disc(), the result is a value that exists in the dataset. If you want to find the true median, it is not a value in this data, and you have to use percentile_cont(). Here is the query:

SELECT percentile_cont(0.5) WITHIN GROUP ( ORDER BY temperature) FROM city_data;

And the result:

percentile_cont

66.28999999999999

But since there are two cities, you might want to calculate the median temperature of each by adding a GROUP BY clause. Here is that query:

SELECT city, percentile_cont(0.5) WITHIN GROUP ( ORDER BY temperature) FROM city_data GROUP BY city;

The results is:

city

percentile_cont

Atlanta

63.14

Miami

68.18

Calculating Multiple Percentiles

For this example, we are going to use a database table called conditions that contains these values:

time

device_id

temperature

humidity

2016-11-15 07:00:00

weather-pro-000001

32.4

49.8

2016-11-15 07:00:00

weather-pro-000002

39.800000000000004

50.2

2016-11-15 07:00:00

weather-pro-000003

36.800000000000004

49.8

2016-11-15 07:00:00

weather-pro-000004

71.8

50.1

2016-11-15 07:00:00

weather-pro-000005

71.8

49.9

2016-11-15 07:00:00

weather-pro-000006

37

49.8

Let’s say that we want to calculate various percentiles for the humidity for each device. Here is an example query:

SELECT device_id, percentile_cont(0.25) WITHIN GROUP( ORDER BY humidity) AS percentile_25, percentile_cont(0.50) WITHIN GROUP( ORDER BY humidity) AS percentile_50, percentile_cont(0.75) WITHIN GROUP( ORDER BY humidity) AS percentile_75, percentile_cont(0.95) WITHIN GROUP( ORDER BY humidity) AS percentile_95 FROM conditions GROUP BY device_id ;

Here is a part of the result:

device_id

percentile_25

percentile_50

percentile_75

percentile_95

weather-pro-000000

49.29999999999999

50.500000000000036

53.10000000000007

54.9000000000001

weather-pro-000001

49.09999999999999

50.00000000000003

51.60000000000005

55.6

weather-pro-000002

52.500000000000036

53.60000000000005

54.00000000000006

54.500000000000064

weather-pro-000003

51.100000000000016

51.90000000000003

52.90000000000004

53.800000000000054

weather-pro-000004

48.60000000000001

49.20000000000002

49.60000000000002

50.400000000000034

Calculating a Series of Percentiles

For this example, we are going back to our original city_data dataset because this query can take a long time to run on a big dataset. We are going to use the generate_series() to create every single whole percentage and then use those values in percentile_cont. Here is the query:

SELECT city, percentile, percentile_cont(p) WITHIN GROUP ( ORDER BY temperature) FROM city_data, generate_series(0.01, 1, 0.01) AS percentile GROUP BY city, percentile;

Here is a selection of the results since the query generates 200 rows of them:

city

percentile

percentile_cont

Atlanta

0.25

62.6

Atlanta

0.26

62.6216

Atlanta

0.27

62.6432

Atlanta

0.28

62.6648

Atlanta

0.29

62.6864

Atlanta

0.30

62.708

Why Use the Timescale approx_percentile() Function Instead of PostgreSQL Percentile Functions?

Calculating the percentile over large datasets, like time-series data in a Timesscale database, can involve a lot of expensive calculations. It can increase the memory footprint of the database, result in higher network costs, and make streaming data unfeasible. The aggregates are also not partializable or parallelizable.

Many times you don’t need this type of accuracy, and approximate percentile calculations will be close enough. This is why Timescale introduced the approx_percentile() hyperfunction. The approx_percentile() function implements the UDDSketch algorithm that uses a modified histogram to approximate the shape of a distribution. This allows for calculating a “good enough” percentile without needing to use all the data or ordering it before it returns the result.

approx_percentile() syntax:

approx_percentile(     percentile DOUBLE PRECISION,     sketch  uddsketch ) RETURNS DOUBLE PRECISION

The second parameter is the sketch to perform the approx_percentile on and is usually returned from a percentile_agg() call. Here is an example query:

SELECT     approx_percentile(0.01, percentile_agg(data)) FROM generate_series(0, 100) data;

Result:

approx_percentile

0.999

Next Steps

To learn more about how to use percentile_cont() and percentile_disc() in PostgreSQL, you can see the PostgreSQL documentation. 

  • To find out more about Timescale’s approx_percentile() function, you can read more about it in the Timescale documentation. 

For examples of how to use these functions in your queries, see these sections of the Timescale documentation:

  • Additional approx_percentile() documentation

  • Info on aggregation and accessor functions

  • Advanced percentile aggregation

  • Percentile approximation advanced aggregation methods

  • Percentile approximation

PostgreSQL Percentile Functions FAQ

Q: What is the difference between percentile_cont() and percentile_disc() functions in PostgreSQL?

A: The percentile_cont() function returns an interpolated value that may not exist in the original dataset, providing a more accurate statistical representation. In contrast, percentile_disc() returns an actual value from the dataset that is closest to the requested percentile. Both functions are used with WITHIN GROUP to specify the ordering of values.

Q: How do I calculate the median (50th percentile) of a dataset in PostgreSQL?

A: You can calculate the median using either percentile function with 0.5 as the parameter. For example, SELECT percentile_cont(0.5) WITHIN GROUP (ORDER BY temperature) FROM city_data; will return the interpolated median value, while percentile_disc(0.5) would return an actual value from the dataset.

Q: Can I calculate multiple percentiles in a single query?

A: Yes, you can calculate multiple percentiles in one query by using multiple percentile function calls. For example: SELECT percentile_cont(0.25) WITHIN GROUP(ORDER BY humidity) AS p25, percentile_cont(0.5) WITHIN GROUP(ORDER BY humidity) AS p50, percentile_cont(0.75) WITHIN GROUP(ORDER BY humidity) AS p75 FROM conditions GROUP BY device_id; will return the 25th, 50th, and 75th percentiles.

Q: How can I calculate percentiles by group in PostgreSQL?

A: You can calculate percentiles for each group by adding a GROUP BY clause to your query. For example, SELECT city, percentile_cont(0.5) WITHIN GROUP (ORDER BY temperature) FROM city_data GROUP BY city; will return the median temperature for each city in the dataset.

Q: What is the approx_percentile() function in Timescale, and when should I use it?

A: The approx_percentile() function is a Timescale hyperfunction that approximates percentiles using the UDDSketch algorithm, which is much more efficient for large datasets. You should use it when exact precision isn't required, but performance is important, especially with time-series data, as it requires less memory and computational resources than PostgreSQL's native percentile functions.

On this page

    Try for free

    Start supercharging your PostgreSQL today.